Redis操作手册
前言：
1.蓝色字体表示命令行命令，正式执行时不要复制前面的#号，#号只是提示应该使用root权限操作
2.绿色字体表示注释，有时注释太多就不用绿色表示了
3.注意：本文档的所有操作请先在测试机里进行实践，请不要直接在真实的服务器中操作！

版权声明：
本文档以开源的形式发布，所有条款如下：
 （1）无担保：作者不保证文档内容的准确无误，亦不承担由于使用此文档所导致的任何后果
 （2）自由使用：任何人可以出于任何目的而自由地 阅读/链接/打印/转载/引用/分发/再创作 此文档，无需任何附加条件
若您 阅读/链接/打印/转载/引用/分发/再创作 本文档，则说明接受以上2个条款。

作者：李茂福
[bookmark: _GoBack]更新日期：2025-12-06

★第0章、Redis简介
Redis（REmote DIctionary Server远程字典服务器）是一个由 Salvatore Sanfilippo 写的 key-value 存储系统，是跨平台的非关系型数据库。
Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选持久性的键值对(Key-Value)存储数据库，并提供多种语言的 API。常用于缓存、消息队列、会话存储等应用场景

原子性操作：
Redis 的所有操作都是原子性的，这意味着操作要么完全执行，要么完全不执行。这种特性对于确保数据的一致性和完整性非常重要。

持久化机制：
Redis 支持数据的持久化，可以将内存中的数据保存在磁盘中，以便在系统重启后能够再次加载使用。这为 Redis 提供了数据安全性，确保数据不会因为系统故障而丢失。

丰富的特性集：
Redis 还支持 publish/subscribe（发布/订阅）模式、通知、key 过期等高级特性。这些特性使得 Redis 可以用于消息队列、实时数据分析等复杂的应用场景。

主从复制和高可用性：
Redis 支持 master-slave 模式的数据备份，提供了数据的备份和主从复制功能，增强了数据的可用性和容错性。

单线程模型：
尽管 Redis 是单线程的，但它通过高效的事件驱动模型来处理并发请求，确保了高性能和低延迟

丰富的数据类型：
Redis 不仅仅支持简单的 key-value 类型的数据，还提供了 list、set、zset（有序集合）、hash 等数据结构的存储。这些数据类型可以更好地满足特定的业务需求，使得 Redis 可以用于更广泛的应用场景

高性能的读写能力：
Redis 将数据存储在内存中，从而显著提高了数据的访问速度

★持久化机制
Redis 提供了 RDB 和 AOF 两种不同的数据持久化方式

RDB
RDB 是一种快照存储持久化方式，具体就是将 Redis 某一时刻的内存数据保存到硬盘的文件当中，默认保存的文件名为 dump.rdb，而在 Redis 服务器启动时，会重新加载 dump.rdb 文件的数据到内存当中恢复数据

客户端可以通过向 Redis 服务器发送 save 或 bgsave 命令让服务器生成 RDB 文件，或者通过服务器配置文件指定触发 RDB 条件。

①save
当客户端向服务器发送 save 命令请求进行持久化时，服务器会阻塞 save 命令之后的其他客户端的请求，直到数据同步完成。
如果数据量太大，同步数据会执行很久，而这期间 Redis 服务器也无法接收其他请求，所以，最好不要在生产环境使用 save 命令

②bgsave
与 save 命令不同，bgsave 命令是一个异步操作。当客户端发服务发出 bgsave 命令时，Redis 服务器主进程会 Forks 一个子进程来数据同步问题，在将数据保存到 RDB 文件之后，子进程会退出。Redis 服务器在处理 bgsave 采用子线程进行 IO 写入，而主进程仍然可以接收其他请求，但 Forks 子进程是同步的，所以 Forks 子进程时，一样不能接收其他请求。如果 Forks 一个子进程花费的时间太久(一般是很快的)，bgsave 命令仍然有阻塞其他客户的请求的情况发生

③服务器配置自动触发
除了通过客户端发送命令外，还有一种方式，就是在 Redis 配置文件中的 save 指定到达触发 RDB 持久化的条件，比如（多少秒内至少达到多少写操作）就开启 RDB 数据同步
例如我们可以在配置文件 redis.conf 指定如下的选项
save 900 1 # 900s内至少达到一条写命令
save 300 10 # 300s内至少达至10条写命令
save 60 10000 # 60s内至少达到10000条写命令

这种通过服务器配置文件触发 RDB 的方式，与 bgsave 命令类似，达到触发条件时，会 Forks 一个子进程进行数据同步。不过最好不要通过这方式来触发 RDB 持久化，因为设置触发的时间太短，则容易频繁写入 RDB 文件，影响服务器性能，时间设置太长则会造成数据丢失

前面介绍了三种让服务器生成 RDB 文件的方式，无论是由主进程生成还是子进程来生成，其过程如下：
 生成临时 RDB 文件，并写入数据
 完成数据写入，用临时文代替代正式 RDB 文件
 删除原来的 RDB 文件
#

RDB的几个优点：
 1、与 AOF 方式相比，通过 RDB 文件恢复数据比较快。
 2、RDB 文件非常紧凑，适合于数据备份。
 3、通过 RDB 进行数据备份，由于使用子进程生成，所以对 Redis 服务器性能影响较小。
#

RDB的几个缺点：
 1、如果服务器宕机的话，采用 RDB 的方式会造成某个时段内数据的丢失，比如我们设置 10 分钟同步一次或 5 分钟达到 1000 次写入就同步一次，那么如果还没达到触发条件服务器就死机了，那么这个时间段的数据会丢失。
 2、使用 Save 命令会造成服务器阻塞，直接数据同步完成才能接收后续请求。
 3、使用 Bgsave 命令在 Forks 子进程时，如果数据量太大，Forks 的过程也会发生阻塞，另外，Forks 子进程会耗费内存
#

AOF
AOF（Append-only file），与 RDB 存储某个时刻的快照不同，AOF 持久化方式会记录客户端对服务器的每一次写操作命令，并将这些写操作以 Redis 协议追加保存到以后缀为 AOF 文件末尾。
在 Redis 服务器重启时，会加载并运行 AOF 文件的命令，以达到恢复数据的目的

Redis 默认不开启 AOF 持久化方式，我们可以在配置文件中开启并进行更加详细的配置
appendonly yes # 开启aof机制，默认是no
appendfilename "appendonly.aof" # aof文件名
appendfsync always # 写入策略，always表示每个写操作都保存到aof文件中，默认是everysec
no-appendfsync-on-rewrite no # 不重写aof文件，默认是no
dir ./ # 保存目录

appendfsync 参数值说明：
	always
	客户端的每一个写操作都保存到 AOF 文件当中，这种策略很安全，但是每个写操作都有 IO 操作，所以很慢

	everysec
	appendfsync 的默认写入策略，每秒写入一次 AOF 文件，因此，最多可能会丢失 1s 的数据

	no
	Redis 服务器不负责写入 AOF，而是交由操作系统来处理什么时候写入 AOF 文件。更快，但也是最不安全的选择，不推荐使用

AOF 文件重写
AOF 将客户端的每一个写操作都追加到 AOF 文件末尾，比如对一个 Key 多次执行 Incr 命令，这时候，AOF 保存每一次命令到 AOF 文件中，AOF 文件会变得非常大，例如：
incr num 1 incr num 2 incr num 3 incr num 4 incr num 5 incr num 6 ... incr num 100000
AOF 文件太大，加载 AOF 文件恢复数据时，就会非常慢，为了解决这个问题，Redis 支持 AOF 文件重写。
通过重写 AOF，可以生成一个恢复当前数据的最少命令集，比如上面的例子中那么多条命令，可以重写为：
set num 100000

no-appendfsync-on-rewrite no # 不重写aof文件，如果开启的话会在每次 Fsync 时都重写，影响服务器性能，因此默认值为 no，不建议开启aof文件重写

客户端向服务器发送 bgrewriteaof 命令，也可以让服务器进行 AOF 重写
AOF 重写方式也是异步操作，即如果要写入 AOF 文件，则 Redis 主进程会 Forks 一个子进程来处理

重写 AOF 文件的好处：
 压缩 AOF 文件，减少磁盘占用量。
 将 AOF 的命令压缩为最小命令集，加快了数据恢复的速度

AOF 文件损坏
在写入 AOF 日志文件时，如果 Redis 服务器宕机，则 AOF 日志文件文件会出格式错误。
在重启 Redis 服务器时，Redis 服务器会拒绝载入这个 AOF 文件，可以通过以下步骤修复 AOF 并恢复数据：
1、备份现在 AOF 文件，以防万一。
2、使用 redis-check-aof 命令修复 AOF 文件，该命令格式如下
> redis-check-aof -fix appendonly.aof # 修复aof日志文件

AOF 的优点：
 AOF 只是追加日志文件，因此对服务器性能影响较小，速度比 RDB 要快，消耗的内存较少

AOF 的缺点：
 AOF 方式生成的日志文件太大，即使通过 AFO 重写，文件体积仍然很大
 恢复数据的速度比 RDB 慢

当 RDB 与 AOF 两种方式都开启时，Redis 会优先使用 AOF 日志来恢复数据，因为 AOF 保存的文件比 RDB 文件更完整

★主从复制及哨兵发现原理
#主从复制
主从复制由一个主节点（Master）和多个从节点（Slave）组成，主节点处理写操作，从节点复制主节点数据并处理读请求。

优点：‌‌
‌‌读写分离‌：减轻主节点压力，提升读取性能。‌‌
‌‌数据备份‌：从节点作为数据副本，提供容灾能力。‌‌
‌配置简单‌：易于部署和维护。‌‌

缺点：
‌故障恢复依赖人工/哨兵‌：主节点宕机后需人工/哨兵 手动将从节点晋升为主节点，可能导致数据不一致。‌‌
‌无‌数据分片‌：所有节点存储相同数据，无法突破单机内存限制，不适合海量数据场景。‌‌

Redis 主从复制分为以下三种方式：
	实时命令流
	当 Master 服务器与 Slave 服务器正常连接时，Master 服务器会发送数据命令流给 Slave 服务器，将自身数据的改变复制到 Slave 服务器（异步的）

	部分复制
	当因为各种原因 Master 服务器与 Slave 服务器断开后，Slave 服务器在重新连上 Master 服务器时会尝试重新获取断开后未同步的数据即部分同步，或者称为部分复制

	全量复制
	如果无法部分同步(比如初次同步)，则会请求进行全量同步，这时 Master 服务器会将自己的 RDB 文件发送给 Slave 服务器进行数据同步，并记录同步期间的其他写入，再发送给 Slave 服务器，以达到完全同步的目的，这种方式称为全量复制

slave节点默认是只读的
在 Redis 2.6 以后，slave只读模式默认是开启的，可以通过配置文件中的 slave-read-only 选项进行配置
slave-read-only yes #默认是yes（只读的）

#主从复制中的 Key 过期问题
Slave 服务器没有权限处理过期的 Key，这样的话，对于在 Master 上过期的 Key，在 Slave 服务器就可能被读取。
所以 Master 会累积过期的 Key，积累一定的量之后，发送 Del 命令到 Slave，删除 Slave 上的 Key
如果 Slave 服务器升级为 Master 服务器 ，则它将开始独立地计算 Key 过期时间，而不需要通过 Master 服务器的帮助

#Redis哨兵节点之间的互相发现机制
哨兵之间的发现不是通过一个中心注册表，而是通过订阅同一个特殊的频道进行发布/订阅来自动发现的。

核心机制
发布/订阅名为 __sentinel__:hello 的频道，每个哨兵实例都会做两件事：
1. 每秒一次，向所有的已知主节点、从节点以及其他哨兵的 __sentinel__:hello 频道发送一条消息，这条消息包含了发送者自己的信息（IP、端口、运行ID等）。
2. 持续监听 __sentinel__:hello 频道，接收来自其他哨兵发布的消息。

通过这个机制，一个哨兵就能动态地发现网络中所有其他的哨兵。

总结与要点
1. 媒介是主节点：哨兵的发现过程依赖于它们共同监控的主节点。所有哨兵通过向主节点的 __sentinel__:hello 频道发布信息来实现互通。
2. 去中心化：没有领导者或中心节点来分配ID或管理成员列表。发现过程是自发、自动的。
3. 信息交换：除了发现彼此，这些 Hello 消息还用于在哨兵间交换对主节点状态的看法（比如认为主节点主观下线的标记），这是达成“客观下线”共识的基础。
4. 直接通信：一旦发现彼此，哨兵节点之间会建立点对点的 TCP 连接。后续的很多通信（如领导者选举投票、故障转移指令）都是通过这种直接连接进行的，而不是通过 Pub/Sub 频道。Pub/Sub 仅用于初始发现和状态广播。
5. 配置更新：当你使用 SENTINEL RESET * 命令或哨兵重启时，它们会清空已知哨兵列表，然后重新开始上述的发现流程。这就是为什么即使配置文件里只写了一个哨兵，最终所有哨兵也能互相感知的原因。

所以，你不需要在哨兵的配置文件中手动列出其他哨兵的地址。只要它们监控的是同一个主节点，并且网络是通的，它们就能自动组成一个集群。当然，在极端情况下，第一个哨兵启动时可能因为收不到任何Hello消息而短暂地以为自己是唯一的哨兵，但这只是暂时的，一旦有其他哨兵加入，它很快就会被发现。

★分布式集群模式原理
分布式集群模式由多个主节点（每个主节点可带从节点）组成，数据通过哈希槽（16384个）分片存储在不同主节点上，实现分布式处理。

优点：
‌‌ 水平扩展‌：数据分片支持海量存储和高并发访问。‌‌
‌‌ 自动故障转移‌：节点故障时，集群自动选举新主节点并迁移数据，无需人工干预。‌‌
‌ 高可用性‌：多主节点架构避免单点故障。‌‌‌‌

缺点：
‌资源消耗大‌：需更多硬件和网络资源。‌‌
‌配置维护复杂‌：需管理节点间通信（如‌Gossip协议）和槽位分配

主从与集群模式对比：
	维度
	主从复制
	分布式集群

	数据存储
	所有节点都存储完整的数据副本
	数据分片存储，每个节点仅负责部分数据

	扩展性
	垂直扩展，受限于单机性能
	水平扩展，支持多节点分布式处理

	故障处理
	需要人工/哨兵 干预切换主节点
	自动故障转移与数据迁移

	适用场景
	读多写少，数据量适中的场景
	海量数据，高并发，高可用性要求高的场景

在Redis 3.0版本之后，Redis提供了分布式集群的支持，从而让Redis也可以通过横向扩展来提高性能和增加数据容量。Redis集群是将整个数据集划分成多个Shard，每个Shard被称为一个Hash slot。同样的，集群由多个Master节点组成，每个Master负责一至多个Shard。而在Redis集群中，则采用RDB快照备份模式并将副本均衡写入多个节点上，从而满足数据的高可靠性需求

Redis集群采用去中心化的思想，没有中心节点的说法，对于客户端来说，整个集群可以看成一个整体，可以连接任意一个节点进行操作，就像操作单一Redis实例一样，不需要任何代理中间件，当客户端操作的key没有分配到该node上时，Redis会返回转向指令，指向正确的node

Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽（槽的范围是 0 -16383，哈希槽），将不同的哈希槽分布在不同的Redis节点上面进行管理，也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候，集群会对使用CRC16算法对key进行计算并对16384取模（slot = CRC16(key)%16384），得到的结果就是 Key-Value 所放入的槽，通过这个值，去找到对应的槽所对应的Redis节点，然后直接到这个对应的节点上进行存取操作。

使用哈希槽的好处就在于可以方便的添加或者移除节点，并且无论是添加删除或者修改某一个节点，都不会造成集群不可用的状态。当需要增加节点时，只需要把其他节点的某些哈希槽挪到新节点就可以了；当需要移除节点时，只需要把移除节点上的哈希槽挪到其他节点就行了；哈希槽数据分区算法具有以下几种特点:
1、解耦数据和节点之间的关系，简化了扩容和收缩难度；
2、节点自身维护槽的映射关系，不需要客户端代理服务维护槽分区元数据
3、支持节点、槽、键之间的映射查询，用于数据路由，在线伸缩等场景

当收到集群中其他节点发送的信息时，通过将节点槽的指派信息保存在本地的clusterState.slots数组里面，程序要检查槽i是否已经被指派，又或者取得负责处理槽i的节点，只需要访问clusterState.slots[i]的值即可，时间复杂度仅为O(1)
ClusterState 中保存的 Slots 数组中每个下标对应一个槽，每个槽信息中对应一个 clusterNode 也就是缓存的节点。这些节点会对应一个实际存在的 Redis 缓存服务，包括 IP 和 Port 的信息。Redis Cluster 的通讯机制实际上保证了每个节点都有其他节点和槽数据的对应关系。无论Redis 的客户端访问集群中的哪个节点都可以路由到对应的节点上，因为每个节点都有一份 ClusterState，它记录了所有槽和节点的对应关系。

Redis 客户端向“缓存节点1”发出请求，此时“缓存节点1”正向“缓存节点 2”迁移数据，如果没有命中对应的 Slot，它会返回客户端一个 ASK 重定向请求并且告诉“缓存节点2”的地址。客户端向“缓存节点2”发送 Asking 命令，询问需要的数据是否在“缓存节点2”上，“缓存节点2”接到消息以后返回数据是否存在的结果
频繁重定向造成的网络开销的处理

#smart客户端
在大部分情况下，可能都会出现一次请求重定向才能找到正确的节点，这个重定向过程显然会增加集群的网络负担和单次请求耗时。所以大部分的客户端都是smart的。所谓 smart客户端，就是指客户端本地维护一份hashslot => node的映射表缓存，大部分情况下，直接走本地缓存就可以找到hashslot => node，不需要通过节点进行moved重定向

hashslot迁移和ask重定向
如果hashslot正在迁移，那么会返回ask重定向给客户端。客户端接收到ask重定向之后，会重新定位到目标节点去执行，但是因为ask发生在hashslot迁移过程中，所以JedisCluster API收到ask是不会更新hashslot本地缓存。

虽然ASK与MOVED都是对客户端的重定向控制，但是有本质区别。ASK重定向说明集群正在进行slot数据迁移，客户端无法知道迁移什么时候完成，因此只能是临时性的重定向，客户端不会更新slots缓存。但是MOVED重定向说明键对应的槽已经明确指定到新的节点，客户端需要更新slots缓存

★第1章、安装redis
到官网查看版本： https://redis.io/download/
源码下载地址：
https://download.redis.io/releases/redis-6.2.13.tar.gz
https://github.com/redis/redis/archive/7.0.12.tar.gz

yum install gcc tcl make
tar -xvf redis-6.2.13.tar.gz
cd redis-6.2.13
make
make install #默认安装路径 /usr/local/bin/

★也可指定安装目录，如下操作：
mkdir /usr/local/redis
make install PREFIX=/usr/local/redis #会自动生成一个bin子目录，安装在/usr/local/redis/bin/目录下

vi /root/redis-6.2.13/redis.conf #源码解压目录下有redis.conf默认配置文件，添加或修改以下配置
bind 0.0.0.0
port 6379
daemonize yes
requirepass passwdxxx

/usr/local/bin/redis-server /root/redis-6.2.13/redis.conf #启动服务（后台运行）

★做成系统服务
ps -ef | grep redis
root 14989 1 0 13:46 ? 00:00:00 redis-server 0.0.0.0:6379
kill -9 14989 #先结束上面刚刚运行的进程

cat > /etc/systemd/system/redis.service <<EOF
[Unit]
Description=redis-server
After=network.target
[Service]
Type=forking
ExecStart=/usr/local/bin/redis-server /root/redis-6.2.13/redis.conf
PrivateTmp=true
[Install]
WantedBy=multi-user.target
EOF

systemctl daemon-reload
systemctl enable redis
systemctl start redis
systemctl status redis

★配置文件详解
vi /root/redis-6.2.13/redis.conf #源码解压目录下有redis.conf默认配置文件，添加或修改以下配置
	bind 0.0.0.0
	#绑定的主机地址，默认是127.0.0.1

	port 6379
	#监听端口，默认是6379

	daemonize yes
	#yes表示以守护进程的方式运行，默认为no

	requirepass passwdxxx
	#连接密码

	timeout 300
	#客户端闲置超时，单位：秒，0表示关闭该功能

	pidfile /var/run/redis.pid
	#指定pid文件，当redis以守护进程方式运行时，默认会把pid写入pid文件

	loglevel notice
	#指定日志记录级别，共有4个级别：debug, verbose, notice, warning，默认为notice

	logfile stdout
	#日志记录方式，默认为stdout，如果配置redis为守护进程方式运行，而日志记录方式为stdout时，会将日志发送给/dev/null

	databases 16
	#设置数据库的数量，默认操作的数据库为0，可以使用select命令在连接上指定数据库id

	save 900 1
	#在900秒（15分钟）内有1个更改时，就将数据同步到数据文件

	save 300 10
	#在300秒（5分钟）内有10个更改时，就将数据同步到数据文件

	save 60 10000
	#在60秒（1分钟）内有10000个更改时，就将数据同步到数据文件

	rdbcompression yes
	#在60秒（1分钟）内有10000个更改时，就将数据同步到数据文件

	rdbcompression yes
	#指定存储至本地数据库时是否压缩数据，默认为yes，redis采用LZF压缩

	dir ./
	#指定本地数据库存放目录

	maxclients 128
	#指定最大客户端连接数，默认10000（实际上限受redis进程可以打开的最大文件描述符数限制）

	maxmemory 1073741824
	#指定最大内存限制，如果达到最大内存，则redis会尝试清除已到期或即将到期的key，如果还是会达到最大内存，则redis会无法进行写入操作，只能读取操作

	appendonly no
	指定是否在每次更新操作后进行日志记录，默认是no（异步地把数据写入磁盘，在一段时间之内数据只存在内存中，因为同步数据到文件是根据前面的save条件来同步的）

	appendfilename appendonly.aof
	指定更新日志文件名，默认为appendonly.aof

	appendfsync everysec
	指定更新日志条件，有3个可选值：
no 表示等操作系统进行数据缓存同步到磁盘（快）
always 表示每次更新操作后手动调用fsync()将数据写到磁盘（慢，安全）
everysec 表示每秒同步一次（折中，默认值）

	vm-enabled no
	是否启用虚拟内存机制，默认为no（vm机制将数据分布存放，由redis将访问量较少的页（冷数据）swap到磁盘上）

	vm-swap-file /tmp/redis.swap
	虚拟内存文件路径，默认为/tmp/redis.swap，不可多个redis实例共享同一个文件

	vm-max-memory 0
	将所有大于vm-max-memory的数据都存入虚拟内存，默认为0（所有）

	vm-page-size 32
	redis swap文件分成了很多的page，一个对象可以保存在多个page上面，但一个page不能被多个对象共享；如果存储很多小对象，建议将page大小设置为32或者64（字节），如果是大对象，则使用更大的page

	vm-pages 134217728
	设置swap文件中的page数量，134217728*32=4GB

	vm-max-threads 4
	设置访问swap文件的线程数，最好不要超过cpu核数

	glueoutputbuf yes
	设置在向客户端应答时，是否把较小的包合并为一个包发送，默认为yes

	activerehashing yes
	指定是否激活重置哈希，默认为yes

	slaveof <masterIp> <port>
	当本机为slave时，需要指定master服务器的ip及端口
redis从5.0.0版本开始将slaveof改名为replicaof

	masterauth passwdxxx
	指定连接master的密码

	include /path-to-local.conf
	指定包含其他的配置文件

★服务端相关操作
10.99.1.51:6379> config get 配置项名称 #查看指定的配置项
10.99.1.51:6379> config get * #查看所有配置项

10.99.1.51:6379> config set 配置项名称 值 #设置指定配置项的值
例：
10.99.1.51:6379> config set loglevel "notice" #设置日志记录级别
10.99.1.51:6379> config set requirepass passwdyy #设置密码

10.99.1.3:6379> client list #列出所有客户端连接
id=3 addr=10.99.1.3:32820 laddr=10.99.1.3:6379 fd=7 name= age=733 idle=0 flags=N db=0 sub=0 psub=0 multi=-1 qbuf=52 qbuf-free=40902 argv-mem=10 obl=0 oll=0 omem=0 tot-mem=61466 events=r cmd=client user=default redir=-1
id=5 addr=10.99.1.3:51568 laddr=10.99.1.3:6379 fd=8 name= age=269 idle=94 flags=P db=0 sub=1 psub=0 multi=-1 qbuf=0 qbuf-free=0 argv-mem=0 obl=0 oll=0 omem=0 tot-mem=20504 events=r cmd=subscribe user=default redir=-1

10.99.1.3:6379> client getname #获取当前连接的信息
"id=3 addr=10.99.1.3:32820 laddr=10.99.1.3:6379 fd=7 name= age=1080 idle=0 flags=N db=0 sub=0 psub=0 multi=-1 qbuf=52 qbuf-free=40902 argv-mem=10 obl=446 oll=0 omem=0 tot-mem=61466 events=r cmd=client user=default redir=-1\nid=5 addr=10.99.1.3:51568 laddr=10.99.1.3:6379 fd=8 name= age=616 idle=441 flags=P db=0 sub=1 psub=0 multi=-1 qbuf=0 qbuf-free=0 argv-mem=0 obl=0 oll=0 omem=0 tot-mem=20504 events=r cmd=subscribe user=default redir=-1\n"
10.99.1.3:6379>
10.99.1.3:6379> client kill 10.99.1.3:51568 #结束指定的客户端连接
(nil)

10.99.1.3:6379> save #将当前redis实例的所有数据快照以rdb文件的形式保存到硬盘，一次性操作
10.99.1.3:6379> bgsave #在后台异步保存当前数据库的数据到磁盘
"id=3 addr=10.99.1.3:32820 laddr=10.99.1.3:6379 fd=7 name= age=733 idle=0 flags=N db=0 sub=0 psub=0 multi=-1 qbuf=52 qbuf-free=40902 argv-mem=10 obl=444 oll=0 omem=0 tot-mem=61466 events=r cmd=client user=default redir=-1\nid=5 addr=10.99.1.3:51568 laddr=10.99.1.3:6379 fd=8 name= age=269 idle=94 flags=P db=0 sub=1 psub=0 multi=-1 qbuf=0 qbuf-free=0 argv-mem=0 obl=0 oll=0 omem=0 tot-mem=20504 events=r cmd=subscribe user=default redir=-1\n"
10.99.1.3:6379>
10.99.1.3:6379> set keyyyyy vaxxxx
Background saving started
10.99.1.3:6379>

10.99.1.3:6379> CLIENT PAUSE 8000 #阻塞当前客户端命令一段时间，时间为毫秒
10.99.1.3:6379> client setname test-client #设置客户端连接名称，默认是无名称name的
OK
10.99.1.3:6379> client list #这时能看到客户端连接的name
id=3 addr=10.99.1.3:32820 laddr=10.99.1.3:6379 fd=7 name= age=1551 idle=106 flags=N db=0 sub=0 psub=0 multi=-1 qbuf=0 qbuf-free=37 argv-mem=0 obl=0 oll=0 omem=0 tot-mem=20552 events=r cmd=client user=default redir=-1
id=6 addr=10.99.1.3:44070 laddr=10.99.1.3:6379 fd=8 name=test-client age=301 idle=0 flags=N db=0 sub=0 psub=0 multi=-1 qbuf=26 qbuf-free=40928 argv-mem=10 obl=0 oll=0 omem=0 tot-mem=61466 events=r cmd=client user=default redir=-1
10.99.1.3:6379>
10.99.1.3:6379> client getname
"test-client"

10.99.1.3:6379> time #返回服务端当前时间戳
1) "1764811615"
2) "595137"

10.99.1.3:6379> dbsize #返回当前数据库的大小（key的数量）
(integer) 10
10.99.1.3:6379> flushdb #删除当前数据库的所有key
10.99.1.3:6379> flushall #删除所有数据库的所有key

10.99.1.3:6379> lastsave #返回最近一次redis成功将数据保存到磁盘上的时间戳
(integer) 1764811944

10.99.1.3:6379> MONITOR #实时打印出redis服务器接收到的所有命令，调试用
OK
1764812086.277372 [0 10.99.1.3:39576] "AUTH" "(redacted)"
1764812086.278454 [0 10.99.1.3:39576] "COMMAND"
1764812103.557127 [0 10.99.1.3:39576] "keys" "*"
1764812113.542340 [0 10.99.1.3:39576] "set" "aaa" "yyyy"

10.99.1.3:6379> role #返回主从实例所属的角色
1) "master"
2) (integer) 0
3) (empty array)

10.99.1.3:6379> DEBUG SEGFAULT #执行一个非法的内存访问 从而使redis服务崩溃，仅用于bug调试
Error: Server closed the connection
(0.73s)
10.99.1.51:6379> shutdown #停止redis服务运行，谨慎操作

★redis使用ssl

★主从模式+哨兵
1主2从3哨兵（redis-server服务最少可以只剩一台正常运行，redis-sentinel哨兵至少要剩2台正常运行）
本实验在一台虚拟机上进行测试，所以复制了3份配置文件，分别监听不同的端口及使用不同的pid文件、数据库文件及日志文件等以防冲突。

cd /root/redis-6.2.14/
cp redis.conf redis-6379.conf
cp redis.conf redis-6380.conf
cp redis.conf redis-6381.conf

sed -i '/^port 6379/s/6379/6380/' redis-6380.conf
sed -i '/^port 6379/s/6379/6381/' redis-6381.conf

sed -i '/^daemonize/s/no/yes/' redis-6379.conf
sed -i '/^daemonize/s/no/yes/' redis-6380.conf
sed -i '/^daemonize/s/no/yes/' redis-6381.conf

sed -i '/^pidfile/s/6379/6380/' redis-6380.conf
sed -i '/^pidfile/s/6379/6381/' redis-6381.conf

sed -i '/^logfile/c\logfile "log-6379"' redis-6379.conf
sed -i '/^logfile/c\logfile "log-6380"' redis-6380.conf
sed -i '/^logfile/c\logfile "log-6381"' redis-6381.conf

sed -i '/^dbfilename/c\dbfilename dump-6379.rdb' redis-6379.conf
sed -i '/^dbfilename/c\dbfilename dump-6380.rdb' redis-6380.conf
sed -i '/^dbfilename/c\dbfilename dump-6381.rdb' redis-6381.conf

sed -i '/^appendfilename/c\appendfilename "appendonly-6379.aof"' redis-6379.conf
sed -i '/^appendfilename/c\appendfilename "appendonly-6380.aof"' redis-6380.conf
sed -i '/^appendfilename/c\appendfilename "appendonly-6381.aof"' redis-6381.conf

echo 'slaveof 127.0.0.1 6379' >> redis-6380.conf #5.0.0版本之后可用 replicaof 替代 slaveof
echo 'slaveof 127.0.0.1 6379' >> redis-6381.conf
echo 'masterauth passwdxx' >> redis-6380.conf
echo 'masterauth passwdxx' >> redis-6381.conf
echo 'masterauth passwdxx' >> redis-6379.conf #主节点也要配置同步主的密码，因为它自己有可能会变成从节点，如果不配置认证密码，会导致同步失败（比如主节点意外重启了，导致它变成了从节点）

/usr/local/bin/redis-server /root/redis-6.2.14/redis-6379.conf #启动redis-server服务
/usr/local/bin/redis-server /root/redis-6.2.14/redis-6380.conf
/usr/local/bin/redis-server /root/redis-6.2.14/redis-6381.conf

#查看复制状态
redis-cli -h 10.99.1.3 -p 6379 -a Centos123 INFO replication
Replication
role:master
connected_slaves:2
slave0:ip=127.0.0.1,port=6380,state=online,offset=294,lag=1
slave1:ip=127.0.0.1,port=6381,state=online,offset=294,lag=1
master_failover_state:no-failover
master_replid:302865c3eb70bce57798b873bbccb381cc61ed13
master_replid2:00
master_repl_offset:294
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:294
redis-cli -h 10.99.1.3 -p 6380 -a Centos123 INFO replication
Replication
role:slave
master_host:127.0.0.1
master_port:6379
master_link_status:up
master_last_io_seconds_ago:5
master_sync_in_progress:0
slave_read_repl_offset:406
slave_repl_offset:406
slave_priority:100
slave_read_only:1
replica_announced:1
connected_slaves:0
master_failover_state:no-failover
master_replid:302865c3eb70bce57798b873bbccb381cc61ed13
master_replid2:00
master_repl_offset:406
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:406
redis-cli -h 10.99.1.3 -p 6381 -a Centos123 INFO replication
Replication
role:slave
master_host:127.0.0.1
master_port:6379
master_link_status:up
master_last_io_seconds_ago:7
master_sync_in_progress:0
slave_read_repl_offset:434
slave_repl_offset:434
slave_priority:100
slave_read_only:1
replica_announced:1
connected_slaves:0
master_failover_state:no-failover
master_replid:302865c3eb70bce57798b873bbccb381cc61ed13
master_replid2:00
master_repl_offset:434
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:295
repl_backlog_histlen:140

#哨兵配置文件sentinel.conf内容：
	port 26379
	哨兵运行端口

	daemonize yes
	以守护进程方式运行，默认是no

	pidfile /var/run/redis-sentinel.pid
	pid文件

	logfile ""
	日志文件路径

	dir /tmp
	工作目录

	sentinel monitor mymaster 127.0.0.1 6379 2
	监控名为 mymaster 的主节点，主节点IP和端口，quorum 法定人数（表示至少需要 2 个哨兵同意才能判定主节点客观下线）mymaster：主节点别名，可自定义
所有哨兵都是监控同一个master-ip-port

	sentinel auth-pass mymaster passwdxx
	主节点密码

	sentinel down-after-milliseconds mymaster 5000
	主观下线时间（毫秒），超过这个时间哨兵认为主节点不可用，默认为30000（即30秒）

	acllog-max-len 128
	设置ACL访问控制列表 日志的最大条数，acl日志存储在内存中，记录与acl相关的命令失败和认证带伤，默认128
该参数仅影响内存中的日志存储，不会直接涉及文件系统

	sentinel parallel-syncs mymaster 1
	故障转移时，最多有多少个从节点同时从新的主节点同步数据

	sentinel failover-timeout mymaster 180000
	故障转移超时时间（毫秒）180秒，哨兵在执行一次故障转移操作时，允许花费的最长时间。以下任一步骤时间超时，都认为本次故障转移失败：
1、选举新主节点
2、晋升操作，将选中的从节点通过slaveof no one命令晋升为主节点
3、重新配置其他从节点，通知他们开始复制新的主节点
4、原主节点恢复后的处理，通知原主去复制新的主节点
如果以上任一步骤超时，都会认为本次故障转移失败，也会最终完成从节点的重新配置，下一次尝试故障转移时间会是当前时间的2倍。

	sentinel deny-scripts-reconfig yes
	用于控制哨兵在执行故障转移failover时，是否允许执行自定义脚本进行配置重写，默认是yes（即在主节点故障转移后，哨兵不会自动调用脚本来通知客户端或更新从节点的配置，拒绝脚本配置重写，以增强安全性）

	SENTINEL resolve-hostnames no
	指定哨兵是否应解析（反向解析）从redis实例收到的主机名，默认是yes（会进行反向解析）

	SENTINEL announce-hostnames no
	哨兵在向其他哨兵或客户端广播主节点信息时，是否使用主机名，设置为no时使用ip地址进行通知，默认是no

cat > sentinel-26379.conf <<EOF
port 26379
daemonize yes
pidfile /var/run/redis-sentinel-26379.pid
logfile "sentinel-26379.log"
dir /tmp
sentinel monitor mymaster 10.99.1.3 6379 2
sentinel auth-pass mymaster passwdxx
sentinel down-after-milliseconds mymaster 5000
acllog-max-len 128
sentinel parallel-syncs mymaster 1
sentinel failover-timeout mymaster 180000
sentinel deny-scripts-reconfig yes
SENTINEL resolve-hostnames no
SENTINEL announce-hostnames no
EOF

cat > sentinel-26380.conf <<EOF
port 26380
daemonize yes
pidfile /var/run/redis-sentinel-26380.pid
logfile "sentinel-26380.log"
dir /tmp
sentinel monitor mymaster 10.99.1.3 6379 2
sentinel auth-pass mymaster passwdxx
sentinel down-after-milliseconds mymaster 5000
acllog-max-len 128
sentinel parallel-syncs mymaster 1
sentinel failover-timeout mymaster 180000
sentinel deny-scripts-reconfig yes
SENTINEL resolve-hostnames no
SENTINEL announce-hostnames no
EOF

cat > sentinel-26381.conf <<EOF
port 26381
daemonize yes
pidfile /var/run/redis-sentinel-26381.pid
logfile "sentinel-26381.log"
dir /tmp
sentinel monitor mymaster 10.99.1.3 6379 2
sentinel auth-pass mymaster passwdxx
sentinel down-after-milliseconds mymaster 5000
acllog-max-len 128
sentinel parallel-syncs mymaster 1
sentinel failover-timeout mymaster 180000
sentinel deny-scripts-reconfig yes
SENTINEL resolve-hostnames no
SENTINEL announce-hostnames no
EOF

/usr/local/bin/redis-sentinel /root/redis-6.2.14/sentinel-26379.conf #启动redis-哨兵服务
/usr/local/bin/redis-sentinel /root/redis-6.2.14/sentinel-26380.conf
/usr/local/bin/redis-sentinel /root/redis-6.2.14/sentinel-26381.conf

查看日志：
tail -f /tmp/sentinel-26379.log
5247:X 04 Dec 2025 19:34:02.731 # Configuration loaded
5247:X 04 Dec 2025 19:34:02.731 * Increased maximum number of open files to 10032 (it was originally set to 1024).
5247:X 04 Dec 2025 19:34:02.731 * monotonic clock: POSIX clock_gettime
5247:X 04 Dec 2025 19:34:02.731 * Running mode=sentinel, port=26379.
5247:X 04 Dec 2025 19:34:02.733 # Sentinel ID is f1f8bcd5445df0c8b3a7e915c89911935f568045
5247:X 04 Dec 2025 19:34:02.733 # +monitor master mymaster 10.99.1.3 6379 quorum 2
5247:X 04 Dec 2025 19:34:02.733 * +slave slave 10.99.1.3:6380 10.99.1.3 6380 @ mymaster 10.99.1.3 6379 #得知其他从节点
5247:X 04 Dec 2025 19:34:02.735 * +slave slave 10.99.1.3:6381 10.99.1.3 6381 @ mymaster 10.99.1.3 6379
5247:X 04 Dec 2025 19:34:04.754 * +sentinel sentinel bc3019118910fc1bd548632596af694ab1955fcf 10.99.1.3 26380 @ mymaster 10.99.1.3 6379 #知道了另一个哨兵上线
5247:X 04 Dec 2025 19:34:04.835 * +sentinel sentinel b78ed04092806233a41dc96ad77c6331a35546ca 10.99.1.3 26381 @ mymaster 10.99.1.3 6379 #知道了另一个哨兵上线

#将6379端口的redis-server关闭后，检查到其下线了，进行了主备切换，切换到了2389
5247:X 04 Dec 2025 19:34:21.465 # +sdown master mymaster 10.99.1.3 6379 #检查到原主下线了
5247:X 04 Dec 2025 19:34:21.571 # +new-epoch 1
5247:X 04 Dec 2025 19:34:21.574 # +vote-for-leader bc3019118910fc1bd548632596af694ab1955fcf 1
5247:X 04 Dec 2025 19:34:22.587 # +odown master mymaster 10.99.1.3 6379 #quorum 3/2 #3个哨兵都认为原主下线
5247:X 04 Dec 2025 19:34:22.587 # Next failover delay: I will not start a failover before Thu Dec 4 19:40:22 2025
#↑，在故障转移超时时间段内，哨兵不会再进行新的故障转移
5247:X 04 Dec 2025 19:34:22.670 # +config-update-from sentinel bc3019118910fc1bd548632596af694ab1955fcf 10.99.1.3 26380 @ mymaster 10.99.1.3 6379
5247:X 04 Dec 2025 19:34:22.670 # +switch-master mymaster 10.99.1.3 6379 10.99.1.3 6380 #切换到新主节点
5247:X 04 Dec 2025 19:34:22.670 * +slave slave 10.99.1.3:6381 10.99.1.3 6381 @ mymaster 10.99.1.3 6380
5247:X 04 Dec 2025 19:34:22.670 * +slave slave 10.99.1.3:6379 10.99.1.3 6379 @ mymaster 10.99.1.3 6380
5247:X 04 Dec 2025 19:34:27.722 # +sdown slave 10.99.1.3:6379 10.99.1.3 6379 @ mymaster 10.99.1.3 6380

redis-cli -h 10.99.1.3 -p 26379 info sentinel #查看哨兵状态
Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=10.99.1.3:6379,slaves=2,sentinels=3
redis-cli -h 10.99.1.3 -p 6380 -a passwdxx info replication #手动切换主备前，先看下目标备节点的状态（可能会切换到这一台）
Replication
role:slave
master_host:10.99.1.3
master_port:6379
master_link_status:up
......

redis-cli -h 10.99.1.3 -p 26379 sentinel failover mymaster #手动切换主备（自动选择一个最优的从节点升级为主）谨慎操作

查看是否切换了主备：
redis-cli -h 10.99.1.3 -p 26379 info sentinel
Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=10.99.1.3:6380,slaves=2,sentinels=3

redis-cli -h 10.99.1.3 -p 6380 -a passwdxx info replication
Replication
role:master
connected_slaves:1
slave0:ip=10.99.1.3,port=6379,state=online,offset=175828,lag=0
master_failover_state:no-failover
......

注意：
当6379的原主server故障后，6380选举为了新的主，如果想将6379再次拉起，需要先添加以下2行配置到它的配置文件中：
slaveof x.x.x.x 6380
masterauth passwdxx

★第2章、redis-cli客户端工具
★命令行客户端
在redis服务端安装目录下有redis-cli命令行工具
redis-cli -h 10.99.1.51 -p 6379 -a passwdxxx #-h指定服务器地址，-p指定端口，-a指定密码
10.99.1.51:6379> ping #检测redis服务是否启动
PONG
10.99.1.51:6379> auth passwdxxx #如果在连接时未输入密码，则在连接后输入密码验证
10.99.1.51:6379>
10.99.1.51:6379> config get dbfilename
1) "dbfilename"
2) "dump.rdb"
10.99.1.51:6379> config get requirepass
1) "requirepass"
2) "passwdxxx"
10.99.1.51:6379> info
Server
redis_version:6.2.13
......
executable:/usr/local/bin/redis-server
config_file:/root/redis-6.2.13/redis.conf
......
10.99.1.51:6379> select 数据库id #切换到指定的数据库（数据库id范围0-16）
10.99.1.51:6379> set keyxx valuexx #创建一个键值对
OK
10.99.1.51:6379> keys * #查看所有的key
1) "what"
2) "namexx"
3) "keyxx"
10.99.1.51:6379> get keyxx #查看指定key对应的值
"valuexx"
not connected> exit #退出命令行（关闭当前连接）
not connected> quit #退出命令行（关闭当前连接）

★可视化客户端工具
官网： https://redis.com/redis-enterprise/redis-insight/
下载链接： https://download.redisinsight.redis.com/latest/RedisInsight-v2-win-installer.exe
[image:]
连接redis服务器时不用写username，只写密码

★性能测试

安装目录下有redis-benchmark工具
redis-benchmark -n 100000 -q -a passwdxx # -n指定请求数，-q强制退出redis仅显示query/sec值
PING_INLINE: 74850.30 requests per second, p50=0.407 msec
PING_MBULK: 77881.62 requests per second, p50=0.399 msec
SET: 82712.98 requests per second, p50=0.343 msec
GET: 77459.34 requests per second, p50=0.383 msec
INCR: 75872.54 requests per second, p50=0.391 msec
LPUSH: 77942.32 requests per second, p50=0.383 msec
RPUSH: 87796.30 requests per second, p50=0.311 msec
LPOP: 78308.54 requests per second, p50=0.423 msec
RPOP: 85324.23 requests per second, p50=0.327 msec
SADD: 88261.25 requests per second, p50=0.311 msec
HSET: 84033.61 requests per second, p50=0.343 msec
SPOP: 77160.49 requests per second, p50=0.399 msec
ZADD: 81037.28 requests per second, p50=0.375 msec
ZPOPMIN: 83263.95 requests per second, p50=0.351 msec
LPUSH (needed to benchmark LRANGE): 80515.30 requests per second, p50=0.383 msec
LRANGE_100 (first 100 elements): 34698.12 requests per second, p50=0.887 msec
LRANGE_300 (first 300 elements): 15532.77 requests per second, p50=1.887 msec
LRANGE_500 (first 500 elements): 10665.53 requests per second, p50=2.575 msec
LRANGE_600 (first 600 elements): 9176.00 requests per second, p50=2.959 msec
MSET (10 keys): 66137.57 requests per second, p50=0.591 msec

redis-benchmark -n 100000 -q -a passwdxx -t set,get #-t仅运行指定的命令，以逗号分隔
SET: 81234.77 requests per second, p50=0.375 msec
GET: 88105.73 requests per second, p50=0.335 msec

★第3章、redis基础知识

★key命名规范
redis的key命名规则主要遵循以下3大原则：
可读性、可管理性、性能优化

命名格式：
分隔符：使用英文冒号:分隔不同层级，比如： user:xxx:profile
字符限制：只允许大小写字母，数字，点号，下划线，冒号

命名结构：
层级化：前缀统一业务模块，如： project:table:filed:id
可读性：key名以value的类型结尾，如： xxxx:userid:string

性能优化：
长度限制：单个key名不超过100字节（redis的key名称允许最大长度为512字节）
避免大key：string类型的value大小不超过10KB，集合类型元素不超过5000个

其他规范：
唯一性：全局唯一，防止冲突
过期时间：所有key需要设置合理过期时间，避免阻塞

redis每个实例最多可以存放2^32 -1个key（约42亿个）
但官方表示经过测试每个实例能处理2.5亿个左右

★value的数据类型
Redis通常被称为数据结构服务器，其值（value）类型有：
	string
	字符串
	可以包含任务数据，比如 字符串，整数，浮点数，图片，序列化的对象等，string类型的值最大能存储512MB

	hash
	哈希，散列
	是一个键值对 的集合，每个hash最多可以存储2^32 -1个键值对

	list
	列表
	有序的列表，可以存储一系列的字符串元素，可以存储2^32 -1个元素

	set
	集合
	无序的集合，可以存储不重复的字符串元素，可以存储2^32 -1个元素

	zset （sorted set）
	有序集合
	类似于集合，但每个元素都有一个分数（score）与之关联

	bitmaps
	位图
	基于字符串类型，可以对每个位 进行操作

	HyperlogLogs
	超日志
	用于基数统计，可以估算集合中的唯一元素数量

	geospatial
	地理空间
	用于存储地理位置信息

	pub/sub
	发布/订阅
	一种消息通信模式，允许客户端订阅消息通道，并接收发布到该通道的消息

	streams
	流
	用于消息队列和日志存储，支持消息的持久化和时间排序

	modules
	模块
	redis支持动态加载模块，可以扩展redis的功能

★key的操作
> exists keyName #检查指定的key是否存在，存在返回1，不存在返回0
> type keyName #返回key所存储的值的类型
> del keyName #删除指定的key，成功返回1，失败返回0
> expire keyName 22 #为指定的key设置过期时间，单位：秒，过了这个时间段后过期
> expireat keyName 时间戳 #为指定的key设置过期时间，到指定的时间戳时过期
> dump keyName #序列化指定的key，并返回被序列化的值
> pexpire keyName 3000 #为指定的key设置过期时间，单位：毫秒，过了这个时间段后过期
> pexpireat keyName 毫秒-时间戳 #为指定的key设置过期时间，到指定的时间戳时过期
> keys 模式 #查找所有符合指定模式（pattern）的key
> move keyName db-id #将当前db的指定key移动到db-id的db中
> persist keyName #移除key的过期时间，key将永久保持，不会过期
> pttl keyName #以毫秒为单位返回ky的剩余过期时间
> ttl keyName #以秒为单位返回ky的剩余过期时间
> randomkey #从当前数据库中随机返回1个key
> rename keyName newKeyName #修改key的名称
> scan cursor [match 模式] [count 99] #迭代数据库中的数据库键

★不同类型value的操作
#string操作
> set keyName valuexxx #设置键的值
> get keyName #获取指定键的值
> incr keyName #将键的值加1
> incrby keyName 3 #将key中存储的数字值加上指定的增量值3
> incrbyfloat keyName 4.5 #将key中存储的数字值加上指定的浮点数增量值4.5
> decr keyName #将键的值减1
> decrby keyName 3 #将key中存储的数字值减去指定的增量值3
> decrbyfloat keyName 4.5 #将key中存储的数字值减去指定的浮点数增量值4.5
> append keyName valueyy #如果key已存在并且是一个字符串类型的值，则将值追加到键的原值之后
> getrange keyName startIndex endIndex #返回指定key中字符串的子字符串
> getset keyName valueyy #设置指定key的新值为valueyy，并返回此key的旧值
> getbit keyName 偏移量 #对key所存储的字符串值，获取指定偏移量上的bit
> setbit keyName 偏移量 valuexx #对key所存储的字符串值，设置指定偏移量上的bit
> setex keyName 99 valuexx #设置key的值，同时指定过期时间为99秒
> psetex keyName 3000 valuexx #设置key的值，同时指定过期时间为3000毫秒
> strlen keyName #返回key所存储的字符串值的长度
> mset keyName1 value1 keyName2 value2 #同时设置多个键值对
> msetnx keyName1 value1 keyName2 value2 #同时设置多个键值对，仅当所有指定的key名称都不存在时
> mget keyName1 keyName2 #获取多个key的值

#hash操作
hash类型相关操作命令是在string类型的命令前加了字母h
> hexists keyName fieldNamexx #查看指定hash表中指定的字段是否存在
> hset keyName fieldNamexx valuexx #设置hash表中的某个键值对（叫作field）
> hmset keyName fieldName1 value1 fieldName2 value2 #可同时设置多个field
> hget keyName fieldNamexx #获取hash表中指定字段的值
> hmget keyName fieldName1 fieldName2 #获取指定hash表中所有指定字段的值
> hgetall keyName #获取hash表中所有字段的值
> hincrby keyName fieldNamexx 3 #将指定hash表中的指定字段的整数值加上增量3
> hincrbyfloat keyName fieldNamexx 3.4 #将指定hash表中的指定字段的浮点数值加上增量3.4
> hkeys keyName #获取指定hash表中的所有字段
> hlen keyName #获取指定hash表中字段的数量
> hmget keyName fieldName1 fieldName2 #获取指定hash表中所有指定字段的值
> hsetnx keyName fieldNamexx valuexx #设置hash表中的某个字段值（仅当此字段不存在时）
> hdel keyName fieldNamexx #删除hash表中的某个字段
> hdel keyName fieldName1 fieldName2 #删除hash表中的多个字段
> hvals keyName #获取hash表中所有的值
> hscan keyName [match 模式] [count 99] #迭代hash表中的键值对

#list操作
list类型相关操作命令是在string类型的命令前加了字母l
> lpush keyName valuexx #将值插入到列表头部
> rpush keyName valueyy #将值插入到列表尾部
> lpop keyName #移出并获取列表的第一个元素
> blpop keyName 5 #移出并获取列表的第一个元素，如果没有此元素会阻塞列表直到等待超时（指定的时间，这里为5秒）或发现可弹出元素为止
> rpop keyName #移出并获取列表的最后一个元素
> brpop keyName 5 #移出并获取列表的最后一个元素，如果没有此元素会阻塞列表直到等待超时（指定的时间，这里为5秒）或发现可弹出元素为止
> lrange keyName startIndex stopIndex #获取列表在指定范围内的元素
> lindex keyName 3 #通过索引获取列表中的元素
> linsert keyName before valueNew valuexx #在列表的元素valuexx前插入新元素
> linsert keyName after valueNew valuexx #在列表的元素valuexx后插入新元素
> rpoppush keySource keyDestination #从源列表中弹出最后一个元素并插入到目的列表中，并返回此元素
> brpoppush keySource keyDestination 5 #从源列表中弹出最后一个元素并插入到目的列表中，并返回此元素，如果没有此元素会阻塞列表直到等待超时（指定的时间，这里为5秒）或发现可弹出元素为止
> llen keyName #获取列表的长度
> lpushx keyName valuexx #将一个值插入到已存在的列表的头部
> rpushx keyName valuexx #将一个值插入到已存在的列表的尾部
> lset keyName 索引值 valuexx #通过索引设置列表元素的值
> ltrim keyName startIndex stopIndex #对一个列表进行修剪（trim），让列表只保留指定区间内的元素

> lrem keyName 数量 valuexx #移除列表元素，
当数量>0时，从表头向表尾搜索，移除指定数量的与valuexx相等的元素
当数量<0时，从表尾向表头搜索，移除指定数量的与valuexx相等的元素
当数量=0时，移除列表中所有与valuexx相等的元素

#set操作
set类型相关操作命令是在string类型的命令前加了字母s
> sadd keyName valuexx #向集合中添加一个成员；添加成功返回1，若已有此元素返回0
> sadd keyName valuexx valueyy #向集合中添加多个成员
> srem keyName valuexx #移除集合中的一个成员
> srem keyName valuexx valueyy #移除集合中的多个成员
> smembers keyName #返回集合中的所有成员
> sismember keyName valuexx #判断值valuexx是否为集合keyName中的成员
> scard keyName #获取集合的成员数
> sdiff keyName1 keyName2 #返回第一个集合与其他集合之间的差异
> sdiffstore keyDestination keyName1 keyName2 #返回给定所有集合的差集 并存储到keyDestination中
> sinter keyName1 keyName2 #返回给定所有集合的交集
> sinterstore keyDestination keyName1 keyName2 #返回给定所有集合的交集 并存储到keyDestination中
> smove keySrc keyDest valuexx #将valuexx元素从keySrc集合移动到keyDest集合中
> spop keyName #移除并返回集合中的一个随机元素
> srandmember keyName 3 #返回集合中的指定数量的随机元素
> sunion keyName1 keyName2 #返回所有给定集合的并集
> sunionstore keyDestination keyName1 keyName2 #返回给定所有集合的并集 并存储到keyDestination中
> sscan keyName cursor [match 模式] [count 34] #迭代集合中的元素

#zset操作
zset和set一样都是string类型元素的集合，不允许重复的成员，但不同的是zset里的每个元素都会关联一个double类型的分数，redis通过这个分数对集合中的成员进行从小到大的排序
zset里的成员是唯一的，但分数可以重复

zset类型相关操作命令是在string类型的命令前加了字母z
> zadd keyName scorexx valuexx #添加一个成员，或者更新已存在成员的分数
> zadd keyName scorexx valuexx scoreyy valueyy #添加多个成员，或者更新已存在成员的分数
> zrange keyName startIndex stopIndex #返回指定范围内的成员
> zrangebylex keyName min max #通过字典区间返回有序集合的成员
> zrangebyscore keyName minScore maxScore #通过分数返回有序集合指定区间内的成员
> zrem keyName valuexx #移除有序集合中的成员
> zscore keyName valuexx #返回指定成员的分数
> zcard keyName #获取有序集合的成员数
> zcount keyName minScore maxScore #计算在有序集合中指定区间分数的成员数
> zincrby keyName 3 valuexx #对指定成员的分数加上增量3
> zinterstore keyDest 后面的key数量 keyName1 keyName2 #计算给定的若干个有序集合的交集 并将结果存储在新的有序集合keyDest中
> zlexcount keyName min max #在有序集合中计算指定字典区间内成员的数量
> zrangk keyName valuexx #返回有序集合中指定成员的索引
> zrevrank keyName valuexx #返回有序集合中指定成员的排名，（按分数
> zremrangebylex keyName min max #移除有序集合中给定的字典区间的所有成员
> zremrangebyrank keyName startIndex stopIndex #移除有序集合中给定的排名区间的所有成员
> zremrangebyscore keyName minScore maxScore #移除有序集合中给定的分数区间的所有成员
> zrevrange keyName startIndex stopIndex #返回有序集合中指定索引区间内的成员，分数从高到低
> zrevrangebyscore keyName minScore maxScore #返回有序集合中指定分数区间内的成员，分数从高到低排序
> zunionstore keyDest 后面的key数量 keyName1 keyName2 #计算给定的若干个有序集合的并集，并存储在新的key中
> zscan keyName cursor [match 模式] [count 33] #迭代有序集合中的元素（含成员及分数值）

★事务
Redis 事务可以一次执行多个命令， 并且带有以下三个重要的保证：
（1）批量操作在发送 EXEC 命令前被放入队列缓存。
（2）收到 EXEC 命令后进入事务执行，事务中任意命令执行失败，其余的命令依然被执行。
（3）在事务执行过程，其他客户端提交的命令请求不会插入到事务执行命令序列中。

一个事务从开始到执行会经历以下三个阶段：
1、开始事务
2、命令入队
3、执行事务

以 MULTI 开始一个事务， 然后将多个命令入队到事务中， 最后由 EXEC 命令执行事务中的所有命令
示例：
10.99.1.3:6379> MULTI
OK
10.99.1.3:6379(TX)> set username "cof-lee"
QUEUED
10.99.1.3:6379(TX)> get username
QUEUED
10.99.1.3:6379(TX)> sadd set_test "aaa" "bbb" "cc cc"
QUEUED
10.99.1.3:6379(TX)> smembers set_test
QUEUED
10.99.1.3:6379(TX)> EXEC
1) OK
2) "cof-lee"
3) (integer) 3
4) 1) "bbb"
 2) "cc cc"
 3) "aaa"
10.99.1.3:6379>

事务可以理解为一个打包的批量执行脚本，但批量指令并非原子化的操作，中间某条指令的失败不会导致前面已做指令的回滚，也不会造成后续的指令不做。
官方说明： https://redis.io/docs/latest/develop/using-commands/transactions/
It's important to note that even when a command fails, all the other commands in the queue are processed – Redis will not stop the processing of commands.
Redis的事务不支持回滚
Redis does not support rollbacks of transactions since supporting rollbacks would have a significant impact on the simplicity and performance of Redis.

在未执行 EXEC 执行（提交）事务之前，可以使用 DISCARD 命令取消本事务的所有命令（放弃提交）
示例：
10.99.1.3:6379> MULTI
OK
10.99.1.3:6379(TX)> ping
QUEUED
10.99.1.3:6379(TX)> set age "19"
QUEUED
10.99.1.3:6379(TX)> DISCARD
OK
10.99.1.3:6379>
10.99.1.3:6379> get aget
(nil)

使用 WATCH 监视某个key，如果这个key在执行事务期间（提交之前）被其他人改动了，则本次事务无法提交成功
10.99.1.3:6379> WATCH age
OK
10.99.1.3:6379> MULTI
OK
10.99.1.3:6379(TX)> set age "88"
QUEUED
10.99.1.3:6379(TX)> set name "tom"
QUEUED
在提交事务之前，其他客户端修改了age的值
10.99.1.3:6379(TX)> EXEC
(nil)

★发布和订阅

#客户端1订阅频道 channelNamexx
10.99.1.3:6379> SUBSCRIBE channelNamexx
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "channelNamexx"
3) (integer) 1

#客户端2发布频道（向频道里发了2条消息）
10.99.1.3:6379> PUBLISH channelNamexx "test message"
(integer) 1
10.99.1.3:6379> PUBLISH channelNamexx "message2"
(integer) 1

然后在客户端1能看到相应频道发布的消息
1) "message"
2) "channelNamexx"
3) "test message"
1) "message"
2) "channelNamexx"
3) "message2"

#查看当前的所有频道
10.99.1.3:6379> PUBSUB channels
1) "channelNamexx"
10.99.1.3:6379>

发布和订阅的缺点是消息无法持久化，如果出现网络断开、Redis 宕机等，消息就会被丢弃。
即：发布/订阅 (pub/sub) 可以分发消息，但无法记录历史消息。

★Stream
Redis Stream 是 Redis 5.0 版本新增加的数据结构。

Redis Stream 主要用于消息队列（MQ，Message Queue）
发布与订阅 (pub/sub) 可以分发消息，但无法记录历史消息
而 Redis Stream 提供了消息的持久化和主备复制功能，可以让任何客户端访问任何时刻的数据，并且能记住每一个客户端的访问位置，还能保证消息不丢失。

每个 Stream 都有唯一的名称，它就是 Redis 的 key，在我们首次使用 xadd 指令追加消息时自动创建

image1.png
My Redis d

Window View Help

My Redis databases

Try Redis Cloud: your ultimate Redis starting point
Includes native support for JSON, Query and Search, and more

D redisinsight

THE GUIDES v

You can manually add your Redis databases. Enter Host and Port of your Redis database to add it to RedisInsight. Learn

more here.

Host*

Port*

10.991.51

6379

Database Alias*

Should not exceed 65535.

10.991.51

Username

Password

Timeout (s)

Enter Username

30

O select Logical Database

Test Connection

‘ Cancel

